【題目】Direction-of-arrival Estimation Based on Compressive Sensing: From On-grid to Gridless 基于壓縮感知的DOA估計方法:從on-grid到gridless
【報告人】南京郵電大學 吳曉歡博士
【時間】2019年3月18号下午15:00起
【地點】南海海洋資源利用國家重點實驗室810報告廳
【英文摘要】Direction-of-arrival (DOA) estimation based on Compressive Sensing (CS) theory is a popular direction in array signal processing area. Compared to the subspace-based methods, the CS-based methods are able to overcome the imperfect scenarios such as small snapshots, low signal-to-noise ratio (SNR) and correlated sources, exhibiting satisfactory estimation performance. However, due to the inequivalent relation between the array model and CS model, these CS-based methods suffer from the limitation of the sparse reconstruction algorithms. More importantly, because of the high correlation and high complexity caused by the grid division, the sparsity-based methods cannot satisfy the requirement of different array processing system in terms of accuracy, computational complexity and adaptability as a whole. With the development of the CS theory, there are three development stages for the CS-base DOA estimation methods: on-grid, off-grid and gridless. The grid mismatch effect caused by the discretization is being overcome. In this talk, I will introduce these three kinds of methods and our recent works in these stagies. I will introduce three covariance-based DOA estimation methods, aiming to eliminate the limitation of the grid division, improve the estimation performance of the CS-based methods as well as reduce the computational co
【中文摘要】基于壓縮感知理論的到達角估計研究是近幾年陣列信号處理領域中的熱門方向,相比于子空間類測向方法,壓縮感知類測向方法能夠克服諸如小快拍、低信噪比和相關信号等非理想場景的顯著局限,展現出較好的測向性能。然而,由于陣列測向模型與稀疏重構模型之間的不等價關系,這些測向方法一方面受到了壓縮感知算法自身局限性的限制,更重要的是,由于網格劃分所帶來的如高相關性、高計算量等問題,其在估計精度、計算複雜度和場景适應能力等方面仍舊難以滿足各種陣列處理系統的要求。随着壓縮感知理論的發展,基于壓縮感知理論的測向方法出現了三個發展階段:on-grid、off-grid和gridless,傳統壓縮感知測向方法所帶來的網格劃分正逐漸得到克服。本報告将介紹這三類方法,以及我們在這幾個階段所做的工作。我将介紹我們提出的三種基于協方差模型的測向方法,旨在解決稀疏表示類測向方法中的固有缺陷,突破網格劃分的限制,提高稀疏表示類方法的測向性能。同時,我們還讨論了這三種方法之間的關聯性。
【報告人簡介】吳曉歡,于2017年在南京郵電大學通信與信息工程學院獲得博士學位,2018年度“南京郵電大學優秀博士論文”獲得者。博士畢業後留校任教。主要研究領域:陣列信号處理、到達角估計、毫米波通信。以第一作者身份在IEEE TVT、Sensors Journal、Signal Processing、ICASSP、DSP等國際知名期刊和會議上發表論文十餘篇,其中ESI高被引論文1篇,目前Google學術引用100餘次。主持國家青年基金、江蘇省青年基金等相關項目5項,參與面上項目2項,同時擔任IEEE TSP、TVT、SPL、Signal Processing等知名期刊審稿人。